脑血管储备能力在缺血性卒中中的作用及研究进展

杨 雪,王 雁

神经病学与神经康复学杂志 ›› 2017, Vol. 13 ›› Issue (4) : 213-220.

PDF(1686 KB)
PDF(1686 KB)
神经病学与神经康复学杂志 ›› 2017, Vol. 13 ›› Issue (4) : 213-220. DOI: 10.12022/jnnr.2017-0054
综述

脑血管储备能力在缺血性卒中中的作用及研究进展

  • 杨 雪,王 雁
作者信息 +

The role of cerebrovascular reserve in ischemic stroke and its research progress

  • YANG Xue, WANG Yan
Author information +
文章历史 +

摘要

缺血性卒中发生时,为了满足代谢需要,脑血管具有自动调节血流量的能力,以对抗脑灌注压急性和慢性变化时对大脑的损伤,这种生理机制——脑血管储备能力(cerebrovascular reserve,CVR)往往可以帮助大脑度过危机。CVR是缺血性卒中病理生理研究领域的里程碑。然而,由于目前对CVR的认识尚不充分,因此限制了将CVR进一步作为缺血性卒中治疗的常规参考指标。本文对CVR的定义及生理机制、评估与干预以及临床应用的进展进行综述。

Abstract

Cerebral blood vessel has the ability to automatically adjust the blood flow to the brain and against the damage of acute or chronic cerebral perfusion pressure alteration to meet the needs of brain metabolism during the occurrence of ischemic stroke. Through this physiological mechanism which is named as cerebrovascular reserve (CVR), the brain can get through the crisis. As a milestone of the research in the pathophysiology of ischemic stroke, however, CVR has not been widely recognized, which restricts the clinical application of CVR in further use as a routine reference index for the treatment of ischemic stroke. In this paper, the definition of CVR and its physiological mechanism, evaluation and intervention, and the progress in clinical application are systematically reviewed.

关键词

缺血性卒中 / 脑血管储备能力 / 临床应用

Key words

Ischemic stroke / Cerebrovascular reserve / Clinical application

引用本文

导出引用
杨 雪,王 雁. 脑血管储备能力在缺血性卒中中的作用及研究进展[J]. 神经病学与神经康复学杂志. 2017, 13(4): 213-220 https://doi.org/10.12022/jnnr.2017-0054
YANG Xue, WANG Yan. The role of cerebrovascular reserve in ischemic stroke and its research progress[J]. Journal of Neurology and Neurorehabilitation. 2017, 13(4): 213-220 https://doi.org/10.12022/jnnr.2017-0054

参考文献

[1] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性卒中诊治指南2014[J]. 中华神经科杂志, 2015, 48(4):246-257.
[2] TSIVGOULIS G, ALEXANDROV AV. Cerebral hemodynamics in acute stroke: pathophysiology and clinical implications[J]. J Vasc Interv Neurol, 2008, 1(3):65-69.
[3] LIEBESKIND DS, COTSONIS GA, SAVER JL, et al. Collateral circulation in symptomatic intracranial atherosclerosis[J]. J Cereb Blood Flow Metab, 2011, 31(5):1293-1301.
[4] SALINET AS, ROBINSON TG, PANERAI RB. Effects of cerebral ischemia on human neurovascular coupling, CO2 reactivity, and dynamic cerebral autoregulation[J]. J Appl Physiol (1985), 2015, 118(2):170-177.
[5] LIU M, ZHOU L. Cerebrovascular reserve may be a more accurate predictor of stroke than degree of ICA or MCA stenosis[J]. Med Sci Monit, 2014, 20:2082-2087.
[6] KIRINO T. Ischemic tolerance[J]. J Cereb Blood Flow Metab, 2002, 22(11):1283-1296.
[7] Cárdenas A, Moro MA, Leza JC, et al. Upregulation of TACE/ADAM17 after ischemic preconditioning is involved in brain tolerance[J]. J Cereb Blood Flow Metab, 2002, 22(11):1297-1302.
[8] LEHOTSKY J, BURDA J, DANIELISOVá V, et al. Ischemic tolerance: the mechanisms of neuroprotective strategy[J]. Anat Rec (Hoboken), 2009, 292(12):2002-2012.
[9] BREMMER JP, VAN BERCKEL BN, PERSOON S, et al. Day-to-day test-retest variability of CBF, CMRO2, and OEF measurements using dynamic 15O PET studies[J]. Mol Imaging Biol, 2011, 13(4):759-768.
[10] ROSTAMI E, ENGQUIST H, JOHNSON U, et al. Monitoring of Cerebral blood flow and metabolism bedside in patients with subarachnoid hemorrhage—a Xenon-CT and microdialysis study[J/OL]. Front Neurol, 2014, 5:89(2014-06-02)[2017-09-18]. https://doi.org/10.3389/fneur.2014.00089. DOI: 10.3389/fneur.2014.00089.
[11] BIVARD A, LEVI C, KRISHNAMURTHY V, et al. Defining acute ischemic stroke tissue pathophysiology with whole brain CT perfusion[J]. J Neuroradiol, 2014, 41(5):307-315.
[12] PURKAYASTHA S, SOROND F. Transcranial Doppler ultrasound: technique and application[J]. Semin Neurol, 2012, 32(4):411-420.
[13] REGAN RE, DUFFIN J, FISHER JA. Instability of the middle cerebral artery blood flow in response to CO2[J/OL]. PLoS One, 2013, 8(7):e70751(2013-07-30)[2017-09-18]. http://doi.org/10.1371/journal.pone.0070751. DOI: 10.1371/journal.pone.0070751.
[14] RATNATUNGA C, ADISESHIAH M. Increase in middle cerebral artery velocity on breath holding: a simplified test of cerebral perfusion reserve[J]. Eur J Vasc Surg, 1990, 4(5):519-523.
[15] PIEPGRAS A, SCHMIEDEK P, LEINSINGER G, et al. A simple test to assess cerebrovascular reserve capacity using transcranial Doppler sonography and acetazolamide[J]. Stroke, 1990, 21(9):1306-1311.
[16] VAGAL AS, LEACH JL, FERNANDEZ-ULLOA M, et al. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia[J]. AJNR Am J Neuroradiol, 2009, 30(5):876-884.
[17] CHAO AC, LIU CK, CHEN CH, et al. Different doses of recombinant tissue-type plasminogen activator for acute stroke in Chinese patients[J]. Stroke, 2014, 45(8):2359-2365.
[18] BERKHEMER OA, JANSEN IG, BEUMER D, et al. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke[J]. Stroke, 2016, 47(3):768-776.
[19] ZHANG C, TAO W, LIU M, et al. Efficacy and safety of human urinary kallidinogenase injection for acute ischemic stroke: a systematic review[J]. J Evid Based Med, 2012, 5(1):31-39.
[20] HECHT N, SCHNEIDER UC, CZABANKA M, et al. Endothelial progenitor cells augment collateralization and hemodynamic rescue in a model of chronic cerebral ischemia[J]. J Cereb Blood Flow Metab, 2014, 34(8):1297-1305.
[21] BUSCH HJ, SCHIRMER SH, JOST M, et al. Leptin augments cerebral hemodynamic reserve after three-vessel occlusion: distinct effects on cerebrovascular tone and proliferation in a nonlethal model of hypoperfused rat brain[J]. J Cereb Blood Flow Metab, 2011, 31(4):1085-1092.
[22] HACKBUSCH D, DüLSNER A, GATZKE N, et al. Knockout of density-enhanced phosphatase-1 impairs cerebrovascular reserve capacity in an arteriogenesis model in mice[J/OL]. Biomed Res Int, 2013:802149(2013-08-20)[2017-09-18]. http://doi.org/10.1155/2013/802149. DOI: 10.1155/2013/802149.
[23] GANDIN C, WIDMANN C, LAZDUNSKI M, et al. MLC901 favors angiogenesis and associated recovery after ischemic stroke in mice[J]. Cerebrovasc Dis, 2016, 42(1-2):139-154.
[24] STOEKENBROEK RM, BOEKHOLDT SM, FAYYAD R, et al. High-dose atorvastatin is superior to moderate-dose simvastatin in preventing peripheral arterial disease[J]. Heart, 2015, 101(5):356-362.
[25] ONGALI B, NICOLAKAKIS N, TONG XK, et al. Enalapril alone or co-administered with losartan rescues cerebrovascular dysfunction, but not mnemonic deficits or amyloidosis in a mouse model of Alzheimer’s disease[J]. J Alzheimers Dis, 2016, 51(4):1183-1195.
[26] YAMAUCHI H, HIGASHI T, KAGAWA S, et al. Impaired perfusion modifies the relationship between blood pressure and stroke risk in major cerebral artery disease[J]. J Neurol Neurosurg Psychiatry, 2013, 84(11):1226-1232.
[27] KINSELLA JA, TOBIN WO, TIERNEY S, et al. Increased platelet activation in early symptomatic vs. asymptomatic carotid stenosis and relationship with microembolic status: results from the Platelets and Carotid Stenosis Study[J]. J Thromb Haemost, 2013, 11(7):1407-1416.
[28] PETERSEN NH, ORTEGA-GUTIERREZ S, RECCIUS A, et al. Dynamic cerebral autoregulation is transiently impaired for one week after large-vessel acute ischemic stroke[J]. Cerebrovasc Dis, 2015, 39(2):144-150.
[29] GUPTA A, CHAZEN JL, HARTMAN M, et al. Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: a systematic review and meta-analysis[J]. Stroke, 2012, 43(11):2884-2891.
[30] PUZ P, LASEK-BAL A, URBANEK T, et al. Assessment of cerebral embolism and vascular reserve parameters in patients with carotid artery stenosis[J]. Neurol Neurochir Pol, 2016, 50(5):356-362.
[31] OGASAWARA K, OGAWA A, YOSHIMOTO T. Cerebrovascular reactivity to acetazolamide and outcome in patients with symptomatic internal carotid or middle cerebral artery occlusion: a xenon-133 single-photon emission computed tomography study[J]. Stroke, 2002, 33(7):1857-1862.
[32] SAITO H, OGASAWARA K, SUZUKI T, et al. Adverse effects of intravenous acetazolamide administration for evaluation of cerebrovascular reactivity using brain perfusion single-photon emission computed tomography in patients with major cerebral artery steno-occlusive diseases[J]. Neurol Med Chir (Tokyo), 2011, 51(7):479-483.
[33] SILVESTRINI M, VERNIERI F, PASQUALETTI P, et al. Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis[J]. JAMA, 2000, 283(16):2122-2127.
[34] ALTINBAS NK, USTUNER E, OZCAN H, et al. Effect of carotid artery stenting on ophthalmic artery flow patterns[J]. J Ultrasound Med, 2014, 33(4):629-638.
[35] SPACEK M, STECHOVSKY C, HORVATH M, et al. Evaluation of cerebrovascular reserve in patients undergoing carotid artery stenting and its usefulness in predicting significant hemodynamic changes during temporary carotid occlusion[J]. Physiol Res, 2016, 65(1):71-79.
[36] RAFIQ MK, CONNOLLY D, RANDALL M, et al. Cerebral hyperperfusion syndrome[J]. Pract Neurol, 2014, 14(1):64-66.
[37] TERADA S, OSHIMA E, SATO S, et al. Depressive symptoms and regional cerebral blood flow in Alzheimer’s disease. Psychiatry Res, 2014, 221(1):86-91.
[38] VEMURI P, LESNICK TG, PRZYBELSKI SA, et al. Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly[J]. Brain, 2015, 138(Pt 3):761-771.
[39] KáPLáR M, PARAGH G, ERDEI A, et al. Changes in cerebral blood flow detected by SPECT in type 1 and type 2 diabetic patients[J]. J Nucl Med, 2009, 50(12):1993-1998.
[40] HAJJAR I, MARMERELIS V, SHIN DC, et al. Assessment of cerebrovascular reactivity during resting state breathing and its correlation with cognitive function in hypertension[J]. Cerebrovasc Dis, 2014, 38(1):10-16.
[41] TCHISTIAKOVA E, ANDERSON ND, GREENWOOD CE, et al. Combined effects of type 2 diabetes and hypertension associated with cortical thinning and impaired cerebrovascular reactivity relative to hypertension alone in older adults[J]. Neuroimage Clin, 2014, 5:36-41.
[42] GIANNOPOULOS S, KATSANOS AH, TSIVGOULIS G, et al. Statins and cerebral hemodynamics[J]. J Cereb Blood Flow Metab, 2012, 32(11):1973-1976.
[43] LI J, CHEN Y, ZHANG X, et al. Human urinary kallidinogenase improves outcome of stroke patients by shortening mean transit time of perfusion magnetic resonance imaging[J]. J Stroke Cerebrovasc Dis, 2015, 24(8):1730-1737.

PDF(1686 KB)

Accesses

Citation

Detail

段落导航
相关文章

/