卒中后上肢康复机器人应用研究进展

顾 腾,李传江,詹 青

神经病学与神经康复学杂志 ›› 2017, Vol. 13 ›› Issue (1) : 44-50.

PDF(2621 KB)
PDF(2621 KB)
神经病学与神经康复学杂志 ›› 2017, Vol. 13 ›› Issue (1) : 44-50. DOI: 10.12022/jnnr.2016-0060
综述

卒中后上肢康复机器人应用研究进展

  • 顾 腾1,李传江1,詹 青2
作者信息 +

Advances in application of rehabilitation robots for upper limb dysfunction in patients with stroke

  • GU Teng1, LI Chuanjiang1, ZHAN Qing2
Author information +
文章历史 +

摘要

卒中后运动功能障碍是神经科医师面临的一大难题,其中对卒中患者的上肢进行康复治疗具有重要的临床意义,而上肢康复机器人是解决这一难题的重要手段。本文通过介绍上肢康复机器人的本体结构、基于肌电信号和脑电信号等生物电信号的康复机器人的人机交互技术、康复机器人的位置及接触力控制技术以及上肢康复训练效果的评价方法,探讨上肢康复机器人的发展前景。

Abstract

Motor dysfunction after stroke is a major problem for neurologists, and it is of important clinical significance that the stroke patients with upper limb dysfunction should need rehabilitation treatment, while the upper limb rehabilitation robots are important tools to solve this problem. This paper introduces the structures of ontology of upper limb rehabilitation robots, human-computer interaction technology of rehabilitation robots based on biological signals including myoelectric signal and electroencephalogram, the control system of rehabilitation robot technology based on the position and force, and the evaluation methods for the efficacy of upper limb rehabilitation training, in order to explore the developing prospects of upper limb rehabilitation robots.

关键词

卒中 / 康复 / 上肢 / 生物电信号 / 机器人

Key words

Stroke / Rehabilitation / Upper extremity / Bioelectric signal / Robotics

引用本文

导出引用
顾 腾,李传江,詹 青. 卒中后上肢康复机器人应用研究进展[J]. 神经病学与神经康复学杂志. 2017, 13(1): 44-50 https://doi.org/10.12022/jnnr.2016-0060
GU Teng, LI Chuanjiang, ZHAN Qing. Advances in application of rehabilitation robots for upper limb dysfunction in patients with stroke[J]. Journal of Neurology and Neurorehabilitation. 2017, 13(1): 44-50 https://doi.org/10.12022/jnnr.2016-0060

参考文献

[1] 陈景藻. 康复医学[M]. 北京: 高等教育出版社, 2001:26.
[2] Winklevoss HE. Inflation based variable life insurance models[J]. J Risk Insur, 1974, 41(4):601-619.
[3] Hawing WS. A review of design issues in rehabilitation robotics with reference to North American Research[J]. IEEE Trans Rehabil Eng, 1995, 3(1):3-13.
[4] Krebs HI, Hogan N, Aisen ML, et al. Robot-aided neurorehabilitation[J]. IEEE Trans Rehabil Eng, 1998, 6(1):75-87.
[5] Loureiro R, Amirabdollahian F, Topping M, et al. Upper limb robot mediated stroke therapy—GENTLE/s approach[J]. Auton Robot, 2003, 15(1):35-51.
[6] 罗东峰. 桌面式上肢康复机器人控制研究[D]. 北京:中国科学院研究生院, 2012.
[7] 季林红, 刘恩辰, 潘 杰. 一种平面训练上肢偏瘫多阶段康复并联机器人:CN102715999A[P]. 2012-10-10.
[8] Maciejasz P, Eschweiler J, Gerlach-Hahn K, et al. A survey on robotic devices for upper limb rehabilitation[J]. J Neuroeng Rehabil, 2014, 11:3.
[9] Perry JC, Rosen J, Burns S. Upper-limb powered exoskeleton design[J]. IEEE/ASME Trans Mechatronics, 2007, 12(4):408-417.
[10] 宋俊朋. 7-DOF外骨骼串联式上肢康复机器人的结构设计与研究[D]. 镇江:江苏大学, 2015.
[11] Yamamoto M, Yanai N, Mohri A. Trajectory control of incompletely restrained parallel-wire-suspended mechanism based on inverse dynamics[J]. IEEE Trans Robot, 2004, 20(5):840-850.
[12] Kamishima H, Arai T, Yuasa K, et al. Hybrid drive parallel arm and its motion control[C]//Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000). New York: IEEE, 2000:516-521.
[13] Verhoeven R. Analysis of the Workspace of Tendon-based Stewart Platforms[EB/OL]. (2014-06-29) [2016-09-01]. http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-5601/verhoevendiss.pdf.
[14] 庄德胜. 一种绳驱动多关节机器人:CN102941573A[P]. 2013-02-27.
[15] 王兴松, 吴青聪. 一种基于套索驱动的上肢康复外骨骼机器人:CN104873360A[P]. 2015-09-02.
[16] 邵珠峰, 唐晓强, 王立平, 等. 一种绳索驱动的外骨骼式上肢康复机器人系统:CN103845184A[P]. 2014-06-11.
[17] Wang S, Li J, Zhang Y, et al. Active and passive control of an exoskeleton with cable transmission for hand rehabilitation[C]//2009 2nd International Conference on Biomedical Engineering and Informatics. New York: IEEE, 2009:1-5.
[18] Putnam W, Knapp RB. Real-time computer control using pattern recognition of the electromyogram[C]//Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ. New York: IEEE, 1993:1236-1237.
[19] Kiguchi K, Fukuda T. A 3DOF exoskeleton for upper-limb motionassist-consideration of the effect of bi-articular muscles[C]//Proceeding of the 2004 IEEE International Conference on Robotics and Automation. New York: IEEE, 2004:2424-2429.
[20] Kiguchi K, Rahman MH, Yamaguchi T. Adaptation strategy for the 3DOF exoskeleton for upper-limb motion assist[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. New York: IEEE, 2005:2296-2301.
[21] Nurhanima K, Elamvazuthia I, Vasant P, et al. Joint torque estimation model of surface electromyography(sEMG) based on swarm intelligence algorithm for robotic assistive device[J]. Proc Comp Sci, 2014, 42:175-182.
[22] 徐宝国, 彭 思, 宋爱国, 等. 基于运动想象脑电的上肢康复机器人[J]. 机器人, 2011, 33(3):307-313.
[23] 雷 毅, 喻洪流, 王露露, 等. 基于虚拟现实的交互式上肢康复训练系统研究[J]. 生物医学工程学进展, 2015, 36(1)21-24.
[24] 秦江伟, 贾晋杰, 李成求, 等. 基于虚拟现实技术的三自由度上肢康复机器人系统[J]. 机电产品开发与创新, 2013, 26(6):17-19.
[25] Zhang JF, Dong YM, Yang CJ, et al. 5-Link model based gait trajectory adaption control strategies of the gait rehabilitation exoskeleton for post-stroke patients[J]. Mechatronics, 2010, 20(3):368-376.
[26] Anam K, Al-Jumaily AA. Active exoskeleton control systems: state of the art[J]. Proc Eng, 2012, 41:988-994.
[27] 吴 军. 上肢康复机器人及相关控制问题研究[D]. 武汉:华中科技大学, 2012.
[28] 李庆玲. 基于sEMG信号的外骨骼式机器人上肢康复系统研究[D]. 哈尔滨:哈尔滨工业大学, 2009.
[29] 王燕妮, 朱宝彤, 戴亚平. 基于模糊阻抗控制的上肢康复机器人中接触力规划器的设计[J]. 北京理工大学学报, 2015, 35(8):805-809.
[30] 康浩博, 王建辉. 基于安全性考虑的五自由度外骨骼式上肢康复机器人自适应控制[J]. 中国科技论文, 2014, 9(7):844-851.
[31] Zhang H, Austin H, Buchanan S, et al. Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using RUPERT[C]//2011 IEEE International Conference on Rehabilitation Robotics. New York: IEEE, 2011:1-6.
[32] 郭 萌, 涂细凯, 何际平, 等. 基于模糊PI控制的穿戴式上肢康复机器人[J]. 华中科技大学学报(自然科学版), 2015, 43(s1):355-358.
[33] 马 妍, 宋爱国. 基于STM32的力反馈型康复机器人控制系统设计[J]. 测控技术, 2014, 33(1):74-78.
[34] Hennes M, Bollue K, Arenbeck H, et al. A proposal for patient-tailored supervision of movement performance during end-effector-based robot-assisted rehabilitation of the upper extremities[J]. Biomed Tech (Berl), 2015, 60(3):193-197.
[35] 张维秋. 五自由度上肢康复机器人康复评价系统的研究与实现[D]. 沈阳:东北大学, 2012.

基金

上海市科委青年基金项目(编号:20164Y0073);上海市部分地方高校能力建设项目(编号:16070502900);上海师范大学康复机器人与智能信息处理技术校级创新团队建设项目(编号:A-7001-15-001005);上海中医药大学附属第七人民医院“七院新星”项目(编号:XX2016-03、XX2016-09)

PDF(2621 KB)

Accesses

Citation

Detail

段落导航
相关文章

/