谷氨酸受体2(glutamate receptor A2,GluA2)Q/R部位编辑率降低以及相关的RNA2的次黄嘌呤腺苷脱氨酶(adenosine deaminase acting on RNA2,ADAR2)的异常与病理性反式激活应答DNA结合蛋白43(transactivation response DNA-binding protein 43-kD,TDP-43)可同时发生在肌萎缩侧索硬化(amyotrophic lateral sclerosis,ALS)患者的运动神经元中,提示在ALS患者中,这些异常分子病变之间可能存在关联。条件性敲除ADAR2基因的ALS小鼠可表现为运动神经元的缓慢死亡。因为缺乏ADAR2可引起TDP-43的异常分布和聚集,引发神经细胞毒性,继而加速运动神经元变性及死亡。本文总结了GluA2 Q/R部位RNA无效编辑的规律和病理性TDP-43在ALS发病中的作用,并讨论了可能影响ADAR2介导的RNA无效编辑的相关因素,以期为研发新的ALS治疗方法提供参考依据。
Abstract
Inefficient glutamate receptor A2 (GluA2) Q/R site-RNA editing and related downregulation of adenosine deaminase acting on RNA2 (ADAR2) expression as well as pathological transactivation response DNA-binding protein 43-kD (TDP-43) can simultaneously occur in the same motor neurons in patients with amyotrophic lateral sclerosis (ALS), suggesting that there may be an association among these molecular abnormalities in ALS patients. The animal experiment has found that after knock-down of ADAR2 gene, the motor neurons of the rats showed a chronic death. The abnormal mislocalization and aggregation of TDP-43 fragments induced by ADAR2 difficiency results in nerve cell toxicity, then accelerating the degeneration and death of the motor neurons. This paper summarizes the role of inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in sporadic ALS, and discusses the possible influencing factors associated with inefficient RNA editing mediated by ADAR2, hoping to provide useful information to develop a novel therapeutic strategy for ALS.
关键词
肌萎缩侧索硬化 /
谷氨酸受体 /
TDP-43 /
钙蛋白酶 /
发病机制
Key words
Amyotrophic lateral sclerosis /
Glutamate receptor /
TDP-43 /
Calpain /
Pathogenic mechanism
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 潘卫东, 方正龙, 刘 云, 等. 肌萎缩侧索硬化症和兴奋性氨基酸[J]. 中国临床神经科学, 2009, 17(1):100-105.
[2] 潘卫东, KWAK S, HIDEYAMA T, 等. 在未编辑的谷氨酸受体2 Q/R部位促使RNA2的次黄嘌呤腺苷脱氨酶丢失引起运动神经元的缓慢死亡[J]. 中国临床神经科学, 2013, 21(1):1-11.
[3] KAWAHARA Y, ITO K, SUN H, et al. Glutamate receptors: RNA editing and death of motor neurons[J]. Nature, 2004, 427(6977):801.
[4] YAMASHITA T, HIDEYAMA T, HACHIGA K, et al. A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology[J]. Nat Commun, 2012(3):1307.
[5] TOLLERVEY J R, CURK T, ROGELJ B, et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43[J]. Nat Neurosci, 2011, 14(4):452-458.
[6] 宋 玉, 王 恒, 潘卫东, 等. 从运动神经元的TDP-43蛋白表达和ADAR2活性探讨肌萎缩侧索硬化症的发病机制[J]. 中国临床神经科学, 2014, 22(4):356-360.
[7] AIZAWA H, SAWADA J, HIDEYAMA T, et al. TDP-43 pathology in sporadic ALS occurs in motor neurons lacking the RNA editing enzyme ADAR2[J]. Acta Neuropathol, 2010, 120(1):75-84.
[8] YAMASHITA T, HIDEYAMA T, TERAMOTO S, et al. The abnormal processing of TDP-43 is not an upstream event of reduced ADAR2 activity in ALS motor neurons[J]. Neurosci Res, 2012, 73(2):153-160.
[9] 暴 洁, 朱旭颖, 蔡定芳. 肌萎缩侧索硬化症的诊断与治疗进展[J]. 神经病学与神经康复学杂志, 2013, 10(4):205-209.
[10] FERRAIUOLO L, KIRBY J, GRIERSON A J, et al. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis[J]. Nat Rev Neurol, 2011, 7(11):616-630.
[11] DEJESUS-HERNANDEZ M, MACKENZIE I R, BOEVE B F, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS[J]. Neuron, 2011, 72(2):245-256.
[12] HIDEYAMA T, YAMASHITA T, AIZAWA H, et al. Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons[J]. Neurobiol Dis, 2012, 45(3):1121-1128.
[13] CATTENOZ P B, TAFT R J, WESTHOF E, et al. Transcriptome-wide identification of A4I RNA editing sites by inosine specific cleavage[J]. RNA, 2013, 19(2):257-270.
[14] GARNCARZ W, TARIQ A, HANDL C, et al. A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing[J]. RNA Biol, 2013, 10(2):192-204.
[15] HIDEYAMA T, YAMASHITA T, SUZUKI T, et al. Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2[J]. J Neurosci, 2010, 30(36):11917-11925.
[16] NEUMANN M, SAMPATHU D M, KWONG L K, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Science, 2006, 314(5796):130-133.
[17] COLOMBRITA C, ONESTO E, MEGIORNI F, et al. TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells[J]. J Biol Chem, 2012, 287(19):15635-15647.
[18] YAMASHITA T, SHIN K. The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients[J]. Brain Res, 2014(1584):28-38.
[19] CHEN-PLOTKIN A S, LEE V M, TROJANOWSKI J Q. TAR DNA-binding protein 43 in neurodegenerative disease[J]. Nat Rev Neurol, 2010, 6(4):211-220.
[20] HIDEYAMA T, TERAMOTO S, HACHIGA K, et al. Co-Occurrence of TDP-43 mislocalization with reduced activity of an RNA editing enzyme, ADAR2, in aged mouse motor neurons[J]. PLoS One, 2012, 7(8):e43469.
[21] SEPHTON C F, CENIK B, CENIK B K, et al. TDP-43 in central nervous system development and function: clues to TDP-43-associated neurodegeneration[J]. Biol Chem, 2012, 393(7):589-594.
[22] HERSKOWITZ J H, GOZAL Y M, DUONG D M, et al. Asparaginyl endopeptidase cleaves TDP-43 in brain[J]. Proteomics, 2012, 12(15-16):2455-2463.
[23] DONNELLY C J, ZHANG P W, PHAM J T, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention[J]. Neuron, 2013, 80(2):415-428.
[24] LAGIER-TOURENNE C, BAUGHN M, RIGO F, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration[J]. Proc Natl Acad Sci U S A, 2013, 110(47):E4530-E4539.
[25] YAMASHITA T, CHAI H L, TERAMOTO S, et al. Rescue of amyotrophic lateral sclerosis phenotype in a mouse model by intravenous AAV9-ADAR2 delivery to motor neurons[J]. EMBO Mol Med, 2013, 5(11):1710-1719.
基金
国家自然科学基金面上项目(编号:81373619)