诱导性多能干细胞及体细胞转分化技术治疗多发性硬化的研究进展

李梅, 谢冲, 管阳太

神经病学与神经康复学杂志 ›› 2016, Vol. 12 ›› Issue (1) : 24-28.

PDF(1353 KB)
PDF(1353 KB)
神经病学与神经康复学杂志 ›› 2016, Vol. 12 ›› Issue (1) : 24-28. DOI: 10.12022/jnnr.2016-0026
综述

诱导性多能干细胞及体细胞转分化技术治疗多发性硬化的研究进展

  • 李梅1, 谢冲1, 管阳太1,2
作者信息 +

Advances in treatment with induced pluripotent stem cells and somatic cell transdifferentiation for multiple sclerosis

  • LI Mei1, XIE Chong1, GUAN Yangtai1,2
Author information +
文章历史 +

摘要

多发性硬化(multiple sclerosis,MS)是一种中枢神经系统炎性脱髓鞘疾病,多发生于青壮年,是成人神经性致残的主要原因。传统治疗仅能延长疾病的缓解期,并不能彻底治愈。诱导性多能干细胞(induced pluripotent stem cells,iPSCs)具有干细胞的分化全能性,在MS细胞替代疗法中具有广阔的应用前景;而体细胞转分化技术相较于传统的iPSCs分化成少突胶质细胞谱系,缩短了时间窗,为MS治疗提供了一条新思路。随着获取神经干细胞和少突胶质细胞效率和质量的提高,未来的MS细胞治疗将有望取得重大的突破。

Abstract

Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of central nervous system and remains one of the major causes of disability in young adults. Conventional therapeutics can only prolong the remission duration, but do not cure it. Induced pluripotent stem cells (iPSCs) with the same totipotent differentiation as the stem cells have a broad prospect for application of cell replacement therapy in MS. Somatic cell reprogramming and transdifferentiating can shorten the time for generating oligodendrocyte cell lineage, as compared with the traditional method with iPSCs, which provides a new idea for the treatment of MS. With the improved efficiency and quality in obtaining neural stem cells and oligodendrocytes, it is possible to have a big achievement in cell therapy for MS.

关键词

多发性硬化 / 诱导性多能干细胞 / 转分化

Key words

Multiple sclerosis / Induced pluripotent stem cells / Transdifferentiation

引用本文

导出引用
李梅, 谢冲, 管阳太. 诱导性多能干细胞及体细胞转分化技术治疗多发性硬化的研究进展[J]. 神经病学与神经康复学杂志. 2016, 12(1): 24-28 https://doi.org/10.12022/jnnr.2016-0026
LI Mei, XIE Chong, GUAN Yangtai. Advances in treatment with induced pluripotent stem cells and somatic cell transdifferentiation for multiple sclerosis[J]. Journal of Neurology and Neurorehabilitation. 2016, 12(1): 24-28 https://doi.org/10.12022/jnnr.2016-0026

参考文献

[1] et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria[J]. Ann Neurol, 2011, 69(2): 292-302.
[2] POSER C M, BRINAR V V. Diagnostic criteria for multiple sclerosis[J]. Clin Neurol Neurosurg, 2001, 103(1):1-11.
[3] POLMAN C H, REINGOLD S C, EDAN G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”[J]. Ann Neurol, 2005, 58(6):840-846.
[4] KHAN O A, TSELIS A C, KAMHOLZ J A, et al. A prospective, open-label treatment trial to compare the effect of IFN beta-1a (Avonex), IFNbeta-1b (Betaseron), and glatiramer acetate (Copaxone) on the relapse rate in relapsing-remitting multiple sclerosis[J]. Eur J Neurol, 2001, 8(2):141-148.
[5] SANDBERG-WOLLHEIM M, BEVER C, CARTER J, et al. Comparative tolerance of IFN beta-1α regimens in patients with relapsing multiple sclerosis. The EVIDENCE study[J]. J Neurol, 2005, 252(1):8-13.
[6] KAPPOS L, RADUE E W, O’CONNOR P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis[J]. N Engl J Med, 2010, 362(5):387-401.
[7] CALABRESI P A, RADUE E W, GOODIN D, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Neurol, 2014, 13(6):545-556.
[8] MILLER D H, KHAN O A, SHEREMATA W A, et al. A controlled trial of natalizumab for relapsing multiple sclerosis[J]. N Engl J Med, 2003, 348(1):15-23.
[9] POLMAN C H, O’CONNOR P W, HAVRDOVA E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis[J]. N Engl J Med, 2006, 354(9):899-910.
[10] CHAHIN S, BALCER L J, MILLER D M, et al. Vision in a phase 3 trial of natalizumab for multiple sclerosis: relation to disability and quality of life[J]. J Neuroophthalmol, 2015, 35(1):6-11.
[11] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
[12] LATERZA C, MERLINI A, DE FEO D, et al. iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF[J]. Nat Commun, 2013(4):2597.
[13] WANG S, BATES J, LI X, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination[J]. Cell Stem Cell, 2013, 12(2):252-264.
[14] AASEN T, RAYA A, BARRERO M J, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes[J]. Nat Biotechnol, 2008, 26(11):1276-1284.
[15] PARK I H, ZHAO R, WEST J A, et al. Reprogramming of human somatic cells to pluripotency with defined factors[J]. Nature, 2008, 451(7175):141-146.
[16] YU J, VODYANIK M A, SMUGA-OTTO K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920.
[17] TOKUMOTO Y, OGAWA S, NAGAMUNE T, et al. Comparison of efficiency of terminal differentiation of oligodendrocytes from induced pluripotent stem cells versus embryonic stem cells in vitro[J]. J Biosci Bioeng, 2010, 109(6):622-628.
[18] OGAWA S, TOKUMOTO Y, MIYAKE J, et al. Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells[J]. In Vitro Cell Dev Biol Anim, 2011, 47(7):464-469.
[19] SONG B, SUN G, HERSZFELD D, et al. Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis[J]. Stem Cell Res, 2012, 8(2):259-273.
[20] PLUCHINO S, QUATTRINI A, BRAMBILLA E, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis[J]. Nature, 2003, 422(6933):688-694.
[21] YANG J, YAN Y, CIRIC B, et al. Evaluation of bone marrow- and brain-derived neural stem cells in therapy of central nervous system autoimmunity[J]. Am J Pathol, 2010, 177(4):1989-2001.
[22] CZEPIEL M, BALASUBRAMANIYAN V, SCHAAFSMA W, et al. Differentiation of induced pluripotent stem cells into functional oligodendrocytes[J]. Glia, 2011, 59(6):882-892.
[23] POUYA A, SATARIAN L, KIANI S, et al. Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination[J]. PLoS One, 2011, 6(11):e27925.
[24] DOUVARAS P, WANG J, ZIMMER M, et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells[J]. Stem Cell Reports, 2014, 3(2):250-259.
[25] TAMAKI S, TOKUMOTO Y. Overexpression of cyclin dependent kinase inhibitor P27/Kip1 increases oligodendrocyte differentiation from induced pluripotent stem cells[J]. In Vitro Cell Dev Biol Anim, 2014, 50(8):778-785.
[26] CZEPIEL M, LEICHER L, BECKER K, et al. Overexpression of polysialylated neural cell adhesion molecule improves the migration capacity of induced pluripotent stem cell-derived oligodendrocyte precursors[J]. Stem Cells Transl Med, 2014, 3(9):1100-1109.
[27] KIM J, EFE J A, ZHU S, et al. Direct reprogramming of mouse fibroblasts to neural progenitors[J]. Proc Natl Acad Sci U S A, 2011, 108(19):7838-7843.
[28] THIER M, WORSDORFER P, LAKES Y B, et al. Direct conversion of fibroblasts into stably expandable neural stem cells[J]. Cell Stem Cell, 2012, 10(4):473-479.
[29] RING K L, TONG L M, BALESTRA M E, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor[J]. Cell Stem Cell, 2012, 11(1):100-109.
[30] LUJAN E, CHANDA S, AHLENIUS H, et al. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells[J]. Proc Natl Acad Sci U S A, 2012, 109(7):2527-2532.
[31] HAN Y C, LIM Y, DUFFIELDL M D, et al. Direct reprogramming of mouse fibroblasts to neural stem cells by small molecules[J]. Stem Cells Int, 2016:4304916.
[32] NAJM F J, LAGER A M, ZAREMBA A, et al. Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells[J]. Nat Biotechnol, 2013, 31(5):426-433.
[33] YANG N, ZUCHERO J B, AHLENIUS H, et al. Generation of oligodendroglial cells by direct lineage conversion[J]. Nat Biotechnol, 2013, 31(5):434-439.
[34] KIM J B, LEE H, ARAUZO-BRAVO M J, et al. Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model[J]. EMBO J, 2015, 34(23):2971-2983.

基金

国家自然科学基金重点项目(编号:81230027); 国家自然科学基金面上项目(编号:81471219); 上海市优秀学术带头人计划(编号:14XD1403400)

PDF(1353 KB)

Accesses

Citation

Detail

段落导航
相关文章

/