Progress in application of induced pluripotent stem cells

SUN Chuanhe, GAO Penglin, LIAO Weilong, JIANG Wenfei, PAN Weidong

Journal of Neurology and Neurorehabilitation ›› 2017, Vol. 13 ›› Issue (2) : 74-79.

PDF(1574 KB)
PDF(1574 KB)
Journal of Neurology and Neurorehabilitation ›› 2017, Vol. 13 ›› Issue (2) : 74-79. DOI: 10.12022/jnnr.2017-0014
Review

Progress in application of induced pluripotent stem cells

  • SUN Chuanhe, GAO Penglin, LIAO Weilong, JIANG Wenfei, PAN Weidong
Author information +
History +

Abstract

Induced pluripotent stem (iPS) cells can be directly generated from differentiated somatic cells by transduction, which is a great revolution in life sciences. iPS cells are similar to embryonic stem cells and have the potential to differentiate into mature cells, but the former can avoid immunological rejection and medical ethics which exists in the study of embryonic stem cells. Therefore, iPS cells have shown a good prospect in the field of basic and clinical research. This paper reviews the 10-year development course of iPS cells research, the use of iPS cells in many kinds of diseases and clinical drug monitoring, and the problems in the study, especially focusing on the application of iPS cells in nervous system diseases.

Key words

Induced pluripotent stem cells / Nervous system diseases / Cardiovascular system diseases / Retinopathy / Communicable diseases / Drug monitoring

Cite this article

Download Citations
SUN Chuanhe, GAO Penglin, LIAO Weilong, JIANG Wenfei, PAN Weidong. Progress in application of induced pluripotent stem cells[J]. Journal of Neurology and Neurorehabilitation. 2017, 13(2): 74-79 https://doi.org/10.12022/jnnr.2017-0014

References

[1] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
[2] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
[3] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920.
[4] Liao J, Wu Z, Wang Y, et al. Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors[J]. Cell Res, 2008, 18(5):600-603.
[5] Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J]. Nature, 2009, 458(7239): 766-770.
[6] Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors[J]. Cell, 2009, 136(5):964-977.
[7] Maeda T, Lee MJ, Takahashi M, et al. Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo[J]. J Biol Chem, 2013, 288(48):34484-34493.
[8] Guo L, Ma M, Zhang N, et al. Stretchable polymeric multielectrode array for conformal neural interfacing[J]. Adv Mater, 2014, 26(9):1427-1433.
[9] Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin[J]. Science, 2007, 318(5858):1920-1923.
[10] Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons[J]. Science, 2008, 321(5893):1218-1221.
[11] Xu D, Alipio Z, Fink LM, et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy[J]. Proc Natl Acad Sci U S A, 2009, 6(3):808-813.
[12] Lu SJ, Feng Q, Park JS, et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells[J]. Blood, 2008, 112(12):4475-4484.
[13] Wernig M, zhao JP, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease[J]. Proc Natl Acad SCI U S A, 2008, 105(15):5856-5861.
[14] 李 梅, 谢 冲, 管阳太. 诱导性多能干细胞及体细胞转分化技术治疗多发性硬化的研究进展[J]. 神经病学与神经康复学杂志, 2016, 12(1):24-28.
[15] Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for sever Parkinson’s disease[J]. N Engl J Med, 2001, 344(10):710-719.
[16] Hargus G, Cooper O, Deleidi M, et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats[J]. Proc Natl Acad Sci U S A, 2010, 107(36):15921-15926.
[17] Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors[J]. Cell, 2009, 136(5):964-977.
[18] Seibler P, Graziotto J, Jeong H, et al. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells[J]. J Neurosci, 2011, 31(16):5970-5976.
[19] Nguyen HN, Byers B, Cord B, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress[J]. Cell Stem Cell, 2011, 8(3):267-280.
[20] De Riva V, Galloni E, Marcon M, et al. Analysis of combined CSF biomarkers in AD diagnosis[J]. Clin Lab, 2014, 60(4):629-634.
[21] Sarazin M, de Souza LC, Lehéricy S, et al. Clinical and research diagnostic criteria for Alzheimer's disease[J]. Neuroimaging Clin N Am, 2012, 22(1):23-32.
[22] Yagi T, Ito D, Okada Y, et al. Modeling familial Alzheimer’s disease with induced pluripotent stem cells[J]. Hum Mol Genet, 2011, 20(23):4530-4539.
[23] HD iPSC Consortium. Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes[J]. Cell Stem Cell, 2012, 11(2):264-278.
[24] Guo X, Disatnik MH, Monbureau M, et al. Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration[J]. J Clin Invest, 2013, 123(12):5371-5388.
[25] Charbord J, Poydenot P, Bonnefond C, et al. High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes[J]. Stem Cells, 2013, 31(9):1816-1828.
[26] Nelson TJ, Martinez-Fernandez A, Terzic A, et al. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells[J]. Circulation, 2009, 120(5):408-416.
[27] Masuda S, Miyagawa S, Sawa Y, et al. Expandable progenitors from induced pluripotent stem cells[J]. Nat Rev Cardiol, 2016, 13(10):574.
[28] Lalit PA, Salick MR, Kamp TJ, et al. Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors[J]. Cell Stem Cell, 2016, 18(3):354-367.
[29] Zhang Y, Cao N, Ding S, et al. Expandable cardiovascular progenitor cells reprogrammed from fibroblasts[J]. Cell Stem Cell, 2016, 18(3):368-381.
[30] Cao N, Liang H, Yang HT, et al. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions[J]. Cell Res, 2013, 23(9):1119-1132.
[31] Birket MJ, Ribeiro MC, Mummery CL, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells[J]. Nat Biotechnol, 2015, 33(9):970-979.
[32] Nakamura S, Takayama N, Eto K, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells[J]. Cell Stem Cell, 2014, 14(4): 535-548.
[33] Hirose S, Takyama N, Eto K, et al. Immortalization of erythroblasts by c-MYC and BCL-XL enables large-scale erythrocyte production from human pluripotent stem cells[J]. Stem Cell Reports, 2013, 1(6):499-508.
[34] Tucker BA, Redenti S, Park IH, et al. Generation of retinal precursors from murine ips cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(Abstr):5149.
[35] Qian X, Nguyen HN, Song MM, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165(5):1238-1254.
[36] Cao L, McDonnell A, Nitzsche A, et al. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia[J]. Sci Transl Med, 2016, 8(335):335ra56.
[37] Tucker BA, Solivan-Timpe F, Roos BR, et al. Duplication of TBK1 stimulates autophagy in iPSC-derived Retinal cells from a patient with normal tension glaucoma[J]. J Stem Cell Res Ther, 2014, 3(5):161.
[38] Esteban MA, Wang T, Qin B, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells[J]. Cell Stem Cell, 2009, 6(1):71-79.
[39] Mali P, Chou BK, Yen J, et al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes[J]. Stem Cells, 2010, 28(4):713-720.
[40] Paquet D, Kwart D,Tessier-Lavigne M, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9[J]. Nature, 2016, 533(7601):125-129.

Funding

General Project of National Natural Science Foundation of China (No. 81373619)
PDF(1574 KB)

Accesses

Citation

Detail

Sections
Recommended

/