Molecular and genetic mechanism of vascular dementia

LIU Xiaohui, LIU Xueyuan

Journal of Neurology and Neurorehabilitation ›› 2016, Vol. 12 ›› Issue (2) : 87-93.

PDF(1616 KB)
PDF(1616 KB)
Journal of Neurology and Neurorehabilitation ›› 2016, Vol. 12 ›› Issue (2) : 87-93. DOI: 10.12022/jnnr.2016-0041
Review

Molecular and genetic mechanism of vascular dementia

  • LIU Xiaohui, LIU Xueyuan
Author information +
History +

Abstract

With the increasing incidence of dementia, more and more attention has been given to this disease. It has already been a clinical difficult problem threatening the health of mankind, especially for the aged people. After Alzheimer's disease, vascular dementia (VaD) is the second leading cause of senile dementia, including ischemic or hemorrhagic cerebrovascular diseases or a variety of clinical dementia due to low blood flow induced by heart and circulatory disorders. VaD is a promising disease for prevention and treatment, and it has been a hot topic in recent years. Therefore, this article summarizes the recent advances in molecular and genetic mechanism of VaD.

Key words

Dementia, vascular / Genetic / Genes / Molecular mechanism

Cite this article

Download Citations
LIU Xiaohui, LIU Xueyuan. Molecular and genetic mechanism of vascular dementia[J]. Journal of Neurology and Neurorehabilitation. 2016, 12(2): 87-93 https://doi.org/10.12022/jnnr.2016-0041

References

[1] IADECOLA C. The pathobiology of vascular dementia[J]. Neuron, 2013, 80(4):844-866.
[2] TANAKA K, OGAWA N, ASANUMA M, et al. Relationship between cholinergic dysfunction and discrimination learning disabilities in Wistar rats following chronic cerebral hypoperfusion[J]. Brain Res, 1996, 729(1):55-65.
[3] WALLIN A, SJOGREN M, BLENNOW K, et al. Decreased cerebrospinal fluid acetylcholinesterase in patients with subcortical ischemic vascular dementia[J]. Dement Geriatr Cogn Disord, 2003, 16(4):200-207.
[4] XIAO Y, GUAN Z Z, WU C X, et al. Correlations between cholinesterase activity and cognitive scores in post-ischemic rats and patients with vascular dementia [J]. Cell Mol Neurobiol, 2012, 32(3):399-407.
[5] KWON K J, KIM M K, LEE E J, et al. Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia[J]. J Neurol Sci, 2014, 347(1-2):66-77.
[6] CERVELLATI C, ROMANI A, SERIPA D, et al. Oxidative balance, homocysteine, and uric acid levels in older patients with Late Onset Alzheimer’s Disease or Vascular Dementia[J]. J Neurol Sci, 2014, 337(1-2):156-161.
[7] DIAS I, POLIDORI M, GRIFFITHS H. Hypercholesterolemia-induced oxidative stress at the blood-brain barrier[J]. Biochem Soc Trans, 2014, 42(4):1001-1005.
[8] DEROUICHE F, BOLE-FEYSOT C, NAIMI D, et al. Hyperhomocysteinemia-induced oxidative stress differentially alters proteasome composition and activities in heart and aorta[J]. Biochem Biophys Res Commun, 2014, 452(3):740-745.
[9] LISA DI F, KALUDERCIC N, CARPI A, et al. Mitochondria and vascular pathology[J]. Pharmacol Rep, 2009, 61(1):123-130.
[10] GUSTAW-ROTHENBERG K, KOWALCZUK K, Stryjecka-Zimmer M. Lipids’ peroxidation markers in Alzheimer’s disease and vascular dementia[J]. Geriatr Gerontol Int, 2010, 10(2):161-166.
[11] GACKOWSKI D, ROZALSKI R, SIOMEK A, et al. Oxidative stress and oxidative DNA damage is characteristic for mixed Alzheimer disease /vascular dementia[J]. J Neurol Sci, 2008, 266(1/2):57-62.
[12] CHAVES M, TORAL A , BISONNI A, et al. Treatment with vitamin D and slowing of progression to severe stage of Alzheimer’s disease[J]. Vertex, 2014, 25(114): 85-91.
[13] ECONOMOS A, WRIGHT C B, MOON Y P, et al. Interleukin 6 plasma concentration associates with cognitive decline: the northern Manhattan study[J]. Neuroepidemiology, 2013, 40(4):253-259.
[14] MALAGUARNERA L, MOTTA M, DI ROSA M, et al. Interleukin-18 and transforming growth factor-β1 plasma levels in Alzheimer’s disease and vascular dementia[J]. Neuropathology, 2006, 26(4):307-312.
[15] MULUGETA E, MOLINA-HOLGADO F, ELLIOTT M S, et al. Inflammatory mediators in the frontal lobe of patients with mixed and vascular dementia[J]. Dement Geriatr Cogn Disord, 2008, 25(3):278-286.
[16] PAI B, SIRIPORNMONGCOLCHAI T, BERENTSEN B, et al. NMDA receptor-dependent regulation of miRNA expression and association with Argonaute during LTP in vivo[J]. Front Cell Neurosci, 2014(7):285.
[17] MOHAMED N E, ZHAO Y, LEE J H, et al. Upregulation of AMPA receptor GluR2 (GluA2) subunits in subcortical ischemic vascular dementia is repressed in the presence of Alzheimer’s disease[J]. Neurochem Int, 2011, 58(7):820-825.
[18] FREDERICKSON C J, SUH S W, SILVA D, et al. Importance of zinc in the central nervous system: The zinc-containing neuron[J] J Nutr, 2000, 130(5S Suppl):1471S-1483S.
[19] TAMANO H, TAKEDA A. Dynamic action of neurometals at the synapse[J]. Metallomics, 2011, 3(7):656-661.
[20] PLUM L M, RINK L, HAASE H. The essential toxin: Impact of zinc on human health[J]. Int J Environ Res Public Health, 2010, 7(4):1342-1365.
[21] SENSI S L, CANZONIERO L M, YU S P, et al. Measurement of intracellular free zinc in living cortical neurons: Routes of entry[J]. J Neurosci, 1997, 17(24):9554-9564.
[22] KOURIE J I. Mechanisms of amyloid beta protein induced modification in ion transport systems: implications for neurodegenerative diseases[J]. Cell Mol Neurobiol, 2001, 21(3):173-213.
[23] PLUTA R, FURMAGA-JABŁOŃSKA W, MACIEJEWSKI R, et al. Brain ischemia activates β- and γ- secretase cleavage of amyloid precursor protein:significance in sporadic Alzheimer’s disease[J]. Mol Neurobiol, 2013, 47(1):425-434.
[24] BULBARELLI A , LONATI E , BRAMBILLA A, et al. Aβ42 production in brain capillary endothelial cells after oxygen and glucose deprivation[J]. Mol Cell Neurosci, 2012, 49(4):415-422.
[25] MUKAETOVA-LADINSKA E B, ABDEL-ALL Z, MUGICA E S, et al. Tau proteins in the temporal and frontal cortices in patients with vascular dementia[J]. Neuropathol Exp Neurol, 2015, 74(2):148-157.
[26] RAPOPORT M, Dawson H N, Binder L I, et al. Tau is essential to beta-amyloid-induced neurotoxicity[J]. Proc Natl Acad Sci U S A, 2002, 99(9):6364-6369.
[27] HERNANDEZ P, LEE G, SJOBERG M, et al. Tau phosphorylation by cdk 5 and Fyn in response to amyloid peptide Abeta (25-35): involvement of lipid rafts[J]. J Alzheimers Dis, 2009, 16(1):149-156.
[28] SOUZA D R, DE GODOY M R, HOTTA J, et al. Association of apolipoprotein E polymorphism in late-onset alzheimer’s disease and vascular dementia in Brazilians[J]. Braz J Med Biol Res, 2003, 36(7):919-923.
[29] FOLIN M, BAIGUERA S, CONCONI M T, et al. Apolipoprotein E as vascular risk factor in neurodegenerative dementia[J]. Int J Mol Med, 2004, 14(4):609-613.
[30] SUN J H, TAN L, WANG H F, et al. Genetics of vascular dementia: systematic review and meta-analysis[J]. J Alzheimers Dis, 2015, 46(3):611-629.
[31] VERGHESE P B, CASTELLANO J M, HOLTZMAN D M. Apolipoprotein E in Alzheimer’s disease and other neurological disorders[J]. Lancet Neurol, 2011, 10(3):241-252.
[32] DAVIDSON Y, GIBBONS L, PURANDARE N, et al. Apolipoprotein E epsilon4 allele frequency in vascular dementia[J]. Dement Geriatr Cogn Disord, 2006, 22(1):15-19.
[33] ROSS O A, SOTO-ORTOLAZA A I, HECKMAN M G. NOTCH3 variants and risk of ischemic stroke[J]. PLoS One, 2013, 8(9):e75035.
[34] MANSOORI N, TRIPATHI M, LUTHRA K, et al. MTHFR (677 and 1298) and IL-6-174 G/C genes in pathogenesis of Alzheimer’s and vascular dementia and their epistatic interaction[J]. Neurobiol Aging, 2012, 33(5):1003.e1-8.
[35] GEISEL J, HUBNER U, BODIS M, et al. The role of genetic factors in the development of hyperhomocysteinemia[J]. Clin Chem Lab Med, 2003, 41(11):1427-1434.
[36] DURRINGTON P N, MACKNESS B, MACKNESS M I. Paraoxonase and atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2001, 21(4):473-480.
[37] ALAM R, TRIPATHI M, MANSOORI N, et al. Synergistic epistasis of paraoxonase 1 (rs662 and rs85460) and apolipoprotein E4 genes in pathogenesis of Alzheimer’s disease and vascular dementia[J]. Am J Alzheimers Dis Other Demen, 2014, 29(8):769-776.
[38] WYSS-CORAY T, MASLIAH E, MALLORY M, et al. Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease[J]. Nature, 1997, 389(6651):603-606.

Funding

General Project of National Natural Science Foundation of China (No. 81371212); Key Funding Project of Shanghai Science and Technology Committee (No. 13411951102, 13JC1404002)
PDF(1616 KB)

Accesses

Citation

Detail

Sections
Recommended

/